Abstract
The LaNiO3 perovskite was chosen for incorporation into a nickel matrix in order to obtain a metallic composite electrode suitable for improving the oxygen evolution reaction (OER) in commercial water electrolysis at elevated temperature. The manufactured LaNiO3 + Ni composite coatings were deposited in a Watts type nickel electrolyte in a specially designed beaker with continuous particle circulation. Activity of the composite coatings was evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and anodic potentiodynamic polarization measurements. The obtained results were compared to a non-catalysed Watts nickel reference sample and the electrochemical measurements confirmed that the coating decreased the OER overpotential by 70 mV. XRD furthermore revealed that a LaNiO3 + Ni composite structure was obtained. Conventional alkaline water electrolysis was carried out at a temperature of 120 °C and a current densities of 0.2 and 0.8 A cm−2. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) were used for characterization of the morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Hydrogen Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.