Abstract
Hydrogels are considered a viable in vitro alternative to monolayer cultures. They provide quintessential characteristics for in vitro studies including biocompatibility, biodegradability, viscoelasticity, hydrophilicity, and low toxicity. Furthermore, many provide necessary extracellular matrix proteins and architecture to support cell growth, proliferation, differentiation, and migration. Synthetic and natural polymer-derived hydrogels both demonstrate positive qualities; however, natural hydrogels have attracted great interest due to their clinical relevancy. In particular, decellularized tissue-derived hydrogels have been identified as a significant resource for tissue engineering applications by mimicking the composition and architecture of their tissue of origin.The use of adipose tissue as a hydrogel has become more prevalent because of limitless resources and accessibility of the tissue itself. Obatala Sciences has established a manufacturing protocol for human decellularized adipose tissue (hDAT) using a series of steps including mechanical disruption, chemical disruption with N-Lauroylsarcosine, and enzymatic digestion with pepsin and hydrochloric acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.