Abstract

Green and low-carbon materialization for dredged sediment (DS) is limited due to its low pozzolanic activity. In this study, a novel DS-based non-sintered lightweight aggregate (LWA) is developed by steel slag (SS) and fly ash (FA) activation. Process optimization is performed by the response surfaces, and the basic properties and characterization of the optimal product are investigated. Results indicated that the optimized design ceramic aggregate (ODCA) was prepared as follows: raw pellets comprising of 59.2% DS, 5% SS, 35.8% FA, 5% MK, 5% H2O2, and 2‰ foam stabilizer were activated by alkali activator (1.5 weight ratio of 14 M NaOH to water glass) and then cured at 80 °C and 95% humidity for 24 h. The basic and environmental performances of ODCA were in accordance with standards, whose bulk density was as low as 665.8 kg/m3, the high cylinder compressive strength was 6.143 MPa, and leaching concentrations of heavy metals were controllable. The regulation mechanism of LWA performances could be summarized as follows. SS and FA additives played the role for the mechanical strength enhancement and passivation of heavy metals, which promoted the formation of sillimanite, chabazite, and C-S-H / C-S-A-H gels in ODCA. The bulk density of ODCA was greatly reduced by H2O2 addition, where ODCA had an open-pore structure with a median pore size of 4969.75 nm. Note that C-S-H/C-S-A-H were the key hydration products to give ODCA light density and high mechanical strength, simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.