Abstract

Tolerance design has a great impact on the cost and quality of a product. Previous research focused on process tolerances or robust tolerance design with little consideration on real manufacturing context. This paper presents a nonlinear method for robust tolerance design based on the real manufacturing context in three stages. The objective function to be minimized is the total manufacturing cost. The constraint equations for the optimization model are also deduced, which select suitable manufacturing processes based on the manufacturing environment. Simulation annealing (SA) is used for the nonlinear optimization. The approach is finally illustrated by a practical example. The results of the comparison with different models indicate that the proposed approach is more effective with the manufacturing resource. The robust and reliable tolerance can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.