Abstract

Porous yttriastabilized zirconia (YSZ), in a composite with NiO, is widely used as a cermet electrode in solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). Given cycles of high temperature in these energy devices, mechanical integrity of the porous YSZ is critical. Pore morphology, as well as properties of the ceramic, ultimately affect the mechanical properties of the cermet electrode. Here, we fabricated porous YSZ sheets via freezing of an aqueous slurry on a cold thermoelectric plate and quantified their flexural properties, both for as-fabricated samples and samples subjected to thermal shock at 200 °C to 500 °C. Results of this work have implications for the hydrogen economy and global decarbonization efforts, in particular for the manufacturing of SOFCs and SOECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call