Abstract

Owing to its high specific stiffness and high thermal stability, silicon carbide is one of the materials most suitable for large space-borne optics. Technologies for accurate optical measurements of large optics in the vacuum or cryogenic conditions are also indispensable. Within the framework of the large SiC mirror study program led by JAXA, we manufactured an 800-mm-diameter lightweight telescope, all of which is made of HB-Cesic, a new type of carbon-fiber-reinforced silicon carbide (C/SiC) material developed jointly by ECM, Germany and MELCO, Japan. We first fabricated an 800-mm HB-Cesic primary mirror, and measured the cryogenic deformation of the mirror mounted on an HB-Cesic optical bench in a liquid-helium chamber. We observed the cryo-deformation of 110 nm RMS at 18 K with neither appreciable distortion associated with the mirror support nor significant residual deformation after cooling. We then integrated the primary mirror and a high-order aspheric secondary mirror into a telescope. To evaluate its optical performance, we established a measurement system, which consists of an interferometer in a pressure vessel mounted on a 5-axis adjustable stage, a 900-mm auto-collimating flat mirror, and a flat mirror stand with mechanisms of 2-axis tilt adjustment and rotation with respect to the telescope optical axis. We installed the telescope with the measurement system into the JAXA 6-m chamber and tested them at a vacuum pressure to verify that the system has a sufficiently high tolerance against vibrations in the chamber environment. Finally we conducted a preliminary study of sub-aperture stitching interferometry, which is needed for telescopes of our target missions in this study, by replacing the 900-mm flat mirror with a rotating 300-mm flat mirror.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.