Abstract

In this research, aluminum tubes were integrated into metal syntactic foam (MSF) to manufacture novel tube-filled foam (TFF) structures. Counter-gravity infiltration casting was used to manufacture TFFs using an innovative single-step process. The density of the resulting TFFs was between 1.79 and 1.91 g cm−3 and thus similar to the density of the surrounding MSF. Microstructural analysis of the interface between tube and MSF indicates no significant chemical reaction. For comparison, MSF reference samples without tubes were produced. Quasi-static compression tests were conducted to determine the mechanical properties of the samples produced. The results indicate that embedded aluminum tubes and surrounding MSF mutually stabilize their deformation. TFF samples compressed with uniform barreling from the center of the sample whereas the deformation of MSFs was localized towards one end of the sample. As a result, TFFs showed superior mechanical performance compared to MSFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.