Abstract

Demand has been growing for structural systems utilizing new materials that are more durable and require less maintenance during the service lifetime. In particular, sandwich composite structures attract attention due to many advantages such as light weight, high strength, corrosion resistance, durability and speedy construction. In this study, three designs of glass reinforced composite sandwich structures, namely boxes (web-core W1), trapezoid and polyurethane rigid foam, are fabricated using new generation of two-part thermoset polyurethane resin systems as matrix materials with vacuum assisted resin transfer molding (VARTM) process. The stiffness, load-carrying capacity and compressive strength were evaluated. Core shear, flatwise and edgewise compression tests were carried out for these three models. The mechanical response of three designs of sandwich structures under flexural loading were analyzed using commercial finite element method (FEM) software ABAQUS. The simulation results of flexural behavior were validated by experimental findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.