Abstract

Commercial ferroalloys are used in the manufacturing of a CoCrFeMnNi high-entropy alloy (HEA) due to their price advantage and the productivity of the manufacturing process. However, elemental impurities such as sulfur in ferroalloys can undermine the mechanical properties of HEAs. Therefore, the desulfurization behavior of a CoCrFeMnNi HEA using the CaO-MgO-Al2O3 (CAM) slagging method with alumina or magnesia refractories and ferroalloys raw material feedstock was investigated in an induction melting furnace at 1773 K to determine how to control the cleanness of the HEA. The resulting desulfurization ratios of the alloy were approx. 47% when refined by the CaAl2O4-MgAl2O4(CA-MA)-saturated slag in an Al2O3 refractory, whereas 94% when refined by the CaO-MgO(C-M)-saturated slag in a MgO refractory. The overall mass transfer coefficients of sulfur for the HEA refined by the CA-MA- and C-M-saturated slags at 1773 K were ko=1.4×10−6m/s and ko=2.0×10−6m/s, respectively, which are lower than the coefficients of iron- and nickel-based alloys at the same experimental conditions. The MnS inclusion particles can precipitate in the mushy zone rather than the liquid region when the solid fraction is close to 1.0, i.e., at the final stage of the solidification. The theoretical radius of MnS increases from 0 to 1.6 µm when the sulfur content rises from 3 ppm to 60 ppm, according to the hypothesis that the mass transfer of sulfur in the HEA is the rate-controlling step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.