Abstract

3D printing is an emerging and disruptive technology, supporting the field of medicine over the past decades. In the recent years, the use of additive manufacturing (AM) has had a strong impact on everyday dental applications. Despite remarkable previous results from interdisciplinary research teams, there is no evidence or recommendation about the proper fabrication of handheld medical devices using desktop 3D printers. The aim of this study was to critically examine and compare the mechanical behavior of materials printed with FFF (fused filament fabrication) and CFR (continuous fiber reinforcement) additive manufacturing technologies, and to create and evaluate a massive and practically usable right upper molar forceps. Flexural and torsion fatigue tests, as well as Shore D measurements, were performed. The tensile strength was also measured in the case of the composite material. The flexural tests revealed the measured force values to have a linear correlation with the bending between the 10 mm (17.06 N at 5000th cycle) and 30 mm (37.99 N at 5000th cycle) deflection range. The findings were supported by scanning electron microscopy (SEM) images. Based on the results of the mechanical and structural tests, a dental forceps was designed, 3D printed using CFR technology, and validated by five dentists using a Likert scale. In addition, the vertical force of extraction was measured using a unique molar tooth model, where the reference test was carried out using a standard metal right upper molar forceps. Surprisingly, the tests revealed there to be no significant differences between the standard (84.80 N ± 16.96 N) and 3D-printed devices (70.30 N ± 4.41 N) in terms of extraction force in the tested range. The results also highlighted that desktop CFR technology is potentially suitable for the production of handheld medical devices that have to withstand high forces and perform load-bearing functions.

Highlights

  • Despite the fact that dental applications are strongly rely on handheld devices, only a few previous studies are available concerning the use of 3D printing in instrument development and production

  • Flexural fatigue tests were performed on both materials, in order to determine their resistance against forces that occur when the medical instrument is under tilting, bending, 3.1

  • 30-mm deflection; the white dotted frame represents the straight fracture line above a 30-mm deflection rate. (b) Composite test specimens used in torsion fatigue testing, after performing the tensile strength test

Read more

Summary

Introduction

Additive manufacturing (AM) technology has become an undoubtedly decisive tool in the healthcare industry It is widely used in model creation and visualization [1], simulator development [2], preoperative planning [3], prototyping, and the smallseries production of medical devices such as implants [4], prosthetics and orthotics [5,6], and laboratory equipment, and can support tissue engineering processes [7]. Surgical devices printed for long-duration space missions have been reported using FFF technology and ABS (acrylonitrile butadiene styrene) material [13,14,15], but dentistry-related applications have not yet been reported This lack of studies potentially indicates that desktop FFF 3D printing technology has serious disadvantages in terms of mechanical and structural stability, due to the anisotropic material characteristics of the end-products, which mainly occur through the use of PLA (polylactic acid) and ABS

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call