Abstract

3D printing and electrospinning are versatile techniques employed to produce 3D structures, such as scaffolds and ultrathin fibers, facilitating the creation of a cellular microenvironment in vitro. These two approaches operate on distinct working principles and utilize different polymeric materials to generate the desired structure. This review provides an extensive overview of these techniques and their potential roles in biomedical applications. Despite their potential role in fabricating complex structures, each technique has its own limitations. Electrospun fibers may have ambiguous geometry, while 3D-printed constructs may exhibit poor resolution with limited mechanical complexity. Consequently, the integration of electrospinning and 3D-printing methods may be explored to maximize the benefits and overcome the individual limitations of these techniques. This review highlights recent advancements in combined techniques for generating structures with controlled porosities on the micro-nano scale, leading to improved mechanical structural integrity. Collectively, these techniques also allow the fabrication of nature-inspired structures, contributing to a paradigm shift in research and technology. Finally, the review concludes by examining the advantages, disadvantages, and future outlooks of existing technologies in addressing challenges and exploring potential opportunities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.