Abstract

Investigations regarding alternative methods for producing polymeric materials with hydrophilic properties have increased considerably. In this context, polymeric biomaterials with hemocompatible surface properties have been successfully obtained by grafting hydrophilic monomers onto commercial polymer films by simultaneous irradiation processes. In this study, simultaneous irradiation and grafting were used to produce a copolymer PVC-co-DMAEMA-co-heparin with hemocompatible surface properties. Characterization by FTIR of the graft copolymer indicates that the increase in monomer grafting levels inhibits the bonding sites to heparin. FTIR-PAS analyses of the graft copolymers showed that the highest graft levels were obtained for the irradiated samples containing 45% of monomer. Heparin, however, could only be detected in the irradiated samples containing 30% of DMAEMA. The analysis of the micrographs, on the other hand, showed that increasing the monomer concentration enhances surface roughness of the graft copolymers. Roughness however decreased with heparin addition. It was possible to verify that an excess of surface roughness of the graft copolymers inhibits anticoagulant properties of heparin, triggering thrombus formation. Platelet adhesion, on its turn, was not significantly affected by the presence of heparin when PVC-co-DMAEMA and PVC-co-DMAEMA-co-heparin, obtained from the systems containing 45% of monomer, are compared. The addition of heparin in the systems containing 30% of DMAEMA resulted in fewer thrombogenic surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.