Abstract

Multimicrotubule chitosan conduits (M-conduits) were fabricated using novel molds and a thermal-induced phase-separation technique. Hollow chitosan conduits (H-conduits) with an inner diameter of 1-5 mm and a wall thickness of 0.2-1.0 mm were made, and then a novel mold composed of a styrofoam insulating pedestal with several holes and a stainless steel cover plate was used to make M-conduits. In brief, corresponding H-conduits were inserted upright into the holes of the styrofoam pedestal, and filled with chitosan solution, then rapidly covered with the precooled stainless steel cover plate, and then placed in a freezer. The styrofoam insulating pedestal enclosing the conduits could reduce the heat transfer through the side wall of the conduits. Gradual phase separation then occurred uniaxially in the presence of a unidirectional temperature gradient from the top end to the bottom end of the chitosan conduits. The phase-separated polymer/solvent systems were then dried in a freeze-dryer. The microtubule diameters were controlled by adjusting the polymer concentration and cooling temperature. In vitro characterization demonstrated that the mold-based multimicrotubule chitosan conduits possessed suitable mechanical strength, microtubule diameter distribution, porosity, swelling, biodegradability, and nerve cell affinity, and so they showed potential for application as nerve tissue engineering scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.