Abstract
The manufacture of a radio frequency filter box using high pressure die casting (HPDC) is compared to the traditional high speed machining route. This paper describes an industrial exercise that concluded HPDC to be an economical and appropriate method to produce larger volumes of thin-walled telecommunications components. Modifications to the component design were made to make the component suitable for the HPDC process. Development of the die design through simulation modelling is described. The wrought alloy was replaced by near-eutectic Al–Si die casting alloy that was found to give better temperature stability performance. Apart from the economic benefits, HPDC was found to give lower filter efficiency losses through better surface finish. The effects of HPDC process variables, such as intensification pressure and injection piston velocity, on component quality, particularly porosity levels, were investigated. The pressure was analysed in terms of HPDC machine set pressure and the pressure measured in the die cavity by pressure sensors. Porosity was found to decrease with increased pressure and slightly increase with higher casting velocities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.