Abstract

In the frame of the blanket module (BM) development for ITER, an R&D programme was implemented for the manufacture of a shield prototype by powder hot isostatic pressing (HIPping). The manufactured shield is a full-scale module No. 11a. Starting from a forged block of 1350 mm × 1300 mm × 450 mm, the main machining steps as deep drilling (1200 mm), 3D machining and sawing were performed. Tubes were 3D bent and large number of small parts were designed and machined. By welding together all the sub-parts we erected the main part of the water coolant circuit. Once the water circuit was built; the shield was completed using powder HIPping together with forged block embedding the tubes in a final solid part. The powder/solid HIP is used to minimize the number of BM seal welds in front of plasma. It increases the reliability of the components during operation. About 300 kg of stainless steel powder was densified together with the forged block. 3D measurement was done before and after the HIP cycle to collect the data to be compared with theoretical model. It allows to predict the main distortions of the solid bulk. Ultrasonic examination of the densified powder on the stainless steel bulk and around the bended tubes was performed as well as mechanical characterization of the samples. The recess for stub key attachment on the vacuum vessel side, the hydraulic connector, the key for the primary wall panel attachment on the front side and the link between the four parallel water coolant circuits were then machined to achieve the shield prototype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call