Abstract

This study was designed to reveal the role of the cement/wood ratio in a hydration test of wood-cement mixtures. The compatibility of oil palm (Elaeis guineensis Jacq) fronds-cement mixtures was tested in the hydration test, with the addition of magnesium chloride as an accelerator at different water/cement ratios. To prove the findings on the hydration behavior of components, the cement-bonded boards were manufactured using a conventional cold-pressing method at different cement/wood ratios. Results indicated that the optimum weight ration of cement/wood increased with decreasing wood powder size based on the equal specific surface area ratio of cement/wood in the hydration test and board manufacturing. The addition of magnesium chloride improved the compatibility of oil palm fronds with cement; the compatibility factor (C A) increased by more than 90% with the addition of 5% magnesium chloride. TheC A factor increased proportionally with a higher magnesium chloride content and a higher water/ cement ratio. The addition of magnesium chloride also enhanced the cement hydration and ultimate board strength properties. However, the addition of 5% magnesium chloride did not improve the properties of boards sufficiently at a cement/wood ratio of 2.2∶1.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.