Abstract

A porous two-dimensional C/C composite was produced via the polymer pyrolysis route using phenolic resin as the matrix precursor and polyacrilonitrile- (PAN-) or pitch-based carbon fibres as reinforcement. The resulting C/C composites were then densified using a modified polysilane followed by pyrolysis to convert the polymer into silicon carbide, sealing the pores in the C/C composite. Aiming to increase the ceramic yield of the infiltrated polysilane and to reduce its volumetric shrinkage during pyrolysis the polymer’s curing behaviour was modified by catalytic addition of 0.1% dicobaltoctacarbonyl [Co 2(CO) 8]. The densification procedure is very efficient in sealing cracks in the C/C composite with SiC. The obtained carbon fibre reinforced C/SiC dual matrix composites were subjected to flexural tests and dynamic mechanical analysis. The flexural and visco-elastic properties of the composite are dominated by the strength of the fibre/matrix interface rather than by the fibre strength or modulus. A correlation between the mechanical loss factor (tan δ) and the fracture behaviour of the composite is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.