Abstract

The paper focuses on increasing the service life of the road pavement layers made of dispersion hardened organomineral mixtures through the aging intensity reduction of organic binder, which begins at the preparation stage of these mixtures and lasts during the structural layer operation. The organic binder generates adsorption-volute shells on the surface of mineral materials, which become more viscous and acquire increased brittleness. Crack formation becomes more intensive, pavement designed and built in accordance with the requirements destroys. Dispersion hardening of the pavement structural layers with chemical fibers from spent sorbents containing oil products, can be used to partially solve this problem. The purpose of the work is to study the aging intensity of the binder in organomineral mixtures using electron paramagnetic resonance methods. The aging intensity of the organic binder is evaluated by the concentration of paramagnetic centers, since asphaltenes are almost one hundred percent concentrate of paramagnets, which can serve as an indicator of the aging intensity of the petroleum dispersion system. It is shown that dispersion hardening of the pavement layers by chemical fibers from spent sorbents containing absorbed oil products, decreases the concentration of paramagnetic centers, which indicates to the higher concentration of asphaltenes, which, in turn, means a decrease in the aging intensity of the oil dispersion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.