Abstract

IntroductionManual ventilations during cardiac arrest are frequently performed outside of recommended guidelines. Real-time feedback has been shown to improve chest compression quality, but the use of feedback to guide ventilation volume and rate has not been studied. The purpose of this study was to determine whether the use of a real-time visual feedback system for ventilation volume and rate improves manual ventilation quality during simulated cardiac arrest.MethodsTeams of 2 emergency medical technicians (EMTs) performed two 8-min rounds of cardiopulmonary resuscitation (CPR) on a manikin during a simulated cardiac arrest scenario with one EMT performing ventilations while the other performed compressions. The EMTs switched roles every 2 min. During the first round of CPR, ventilation and chest compression feedback was disabled on a monitor/defibrillator. Following a 20-min rest period and a brief session to familiarize the EMTs with the feedback technology, the trial was repeated with feedback enabled. The primary outcome variables for the study were ventilations and chest compressions within target. Ventilation rate (target, 8–10 breaths/minute) and tidal volume (target, 425–575 ml) were measured using a novel differential pressure-based flow sensor. Data were analyzed using paired t tests.ResultsTen teams of 2 EMTs completed the study. Mean percentages of ventilations performed in target for rate (41% vs. 71%, p < 0.01), for volume (31% vs. 79%, p < 0.01), and for rate and volume together (10% vs. 63%, p < 0.01) were significantly greater with feedback.ConclusionThe use of a novel visual feedback system for ventilation quality increased the percentage of ventilations in target for rate and volume during simulated CPR. Real-time feedback to perform ventilations within recommended guidelines during cardiac arrest should be further investigated in human resuscitation.

Highlights

  • Manual ventilations during cardiac arrest are frequently performed outside of recommended guidelines

  • Twenty emergency medical technicians (EMTs) (4 females) with a range of clinical experience participated in the study

  • The median time spent employed in emergency medical services (EMS) was 3 years (IQR = 2–17 years) (Table 1)

Read more

Summary

Introduction

Manual ventilations during cardiac arrest are frequently performed outside of recommended guidelines. Real-time feedback has been shown to improve chest compression quality, but the use of feedback to guide ventilation volume and rate has not been studied. The purpose of this study was to determine whether the use of a real-time visual feedback system for ventilation volume and rate improves manual ventilation quality during simulated cardiac arrest. High-quality ventilations are a critical component of cardiac arrest resuscitation; it is known that ventilations are commonly performed outside of recommended guidelines [1, 2]. It is known that healthcare professionals commonly perform ventilations outside of recommended guidelines during CPR [3, 9] and that higher respiratory rates and elevated tidal volumes are associated with poor outcomes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call