Abstract

PurposeResearchers heavily investigated the use of industrial robots to enhance the quality of spray-painted surfaces. Despite its advantages, automating process is not always economically feasible. The manual process, on the other hand, is cheaper, but its quality is prone to the mental and physical conditions of the worker making it difficult to operate consistently. This research proposes a mathematical cost model that integrates human factors in determining optimal process settings.Design/methodology/approachTaguchi's robust design is used to investigate the effect of fatigue, stability of worker's hand and speed on paint consumption, surface quality, and processing time. A crossed array experimental design is deployed. Regression analysis is then used to model response variables and formulate cost model, followed by a multi-response optimization.FindingsResults reveal that noise factors have a significant influence on painting quality, time, and cost of the painted surface. As a result, a noise management strategy should be implemented to reduce their impact and obtain better quality and productivity results. The cost model can be used to determine optimal setting for different applications by product and by industry.Originality/valueHardly any research considered the influence of human factors. Most focused on robot trajectory and its effect on paint uniformity. In proposed research, both cost and quality are integrated into a single objective. Quality is measured in terms of uniformity, smoothness, and surface defects. The interaction between trajectory and flow rate is investigated here for the first time. A unique approach integrating quality management, statistical analysis, and optimization is used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.