Abstract

PurposeAccurate segmentation of artificial assembly action is the basis of autonomous industrial assembly robots. This paper aims to study the precise segmentation method of manual assembly action.Design/methodology/approachIn this paper, a temporal-spatial-contact features segmentation system (TSCFSS) for manual assembly actions recognition and segmentation is proposed. The system consists of three stages: spatial features extraction, contact force features extraction and action segmentation in the temporal dimension. In the spatial features extraction stage, a vectors assembly graph (VAG) is proposed to precisely describe the motion state of the objects and relative position between objects in an RGB-D video frame. Then graph networks are used to extract the spatial features from the VAG. In the contact features extraction stage, a sliding window is used to cut contact force features between hands and tools/parts corresponding to the video frame. Finally, in the action segmentation stage, the spatial and contact features are concatenated as the input of temporal convolution networks for action recognition and segmentation. The experiments have been conducted on a new manual assembly data set containing RGB-D video and contact force.FindingsIn the experiments, the TSCFSS is used to recognize 11 kinds of assembly actions in demonstrations and outperforms the other comparative action identification methods.Originality/valueA novel manual assembly actions precisely segmentation system, which fuses temporal features, spatial features and contact force features, has been proposed. The VAG, a symbolic knowledge representation for describing assembly scene state, is proposed, making action segmentation more convenient. A data set with RGB-D video and contact force is specifically tailored for researching manual assembly actions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.