Abstract

The crater density and distribution of Venus indicates the average surface age is younger (≤1Ga) than most terrestrial planets and satellites in the Solar System. The type and rate (i.e. equilibrium, catastrophic or differential) of volcanism associated with the stagnant lid tectonic system of Venus is a first order problem that has yet to be resolved but is directly related to the thermal conditions of the mantle. The calculated primary melt composition of basalt at the Venera 14 landing site is high-Mg basalt to picrite with a mantle potential temperature estimate similar to terrestrial ambient mantle (1370±70°C). The calculated accumulated fractional melting curves indicate the olivine compositions from the melt have Mg# of 89–91. The results show that the thermal regime required to generate the primary melt composition of the Venera 14 basalt was not anomalously high (i.e. mantle-plume system) but rather consistent with a lithospheric tensional rift system. The juxtaposition of high thermal regime structures (e.g. Beta Regio) and ‘ambient’ mantle potential temperature estimates of the Venera 14 basalt suggests that the relatively young surface of Venus is the result of volcanism from a combination of thermal systems that resurfaced the planet at variable rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.