Abstract

Context. The observed cloudshine and coreshine (C-shine) have been explained in terms of grain growth leading to enhanced scatter- ing from clouds in the J, H and K photometric bands and the Spitzer IRAC 3.6 and 4.5 {\mu}m bands. Aims. Using our global dust modelling approach THEMIS (The Heterogeneous dust Evolution Model at the IaS) we explore the effects of dust evolution in dense clouds, through aliphatic-rich carbonaceous mantle formation and grain-grain coagulation. Methods. We model the effects of wide band gap a-C:H mantle formation and the low-level aggregation of diffuse interstellar medium dust in the moderately-extinguished outer regions of molecular clouds. Results. The formation of wide band gap a-C:H mantles on amorphous silicate and amorphous carbon (a-C) grains leads to a decrease in their absorption cross-sections but no change in their scattering cross-sections at near-IR wavelengths, resulting in higher albedos. Conclusions. The evolution of dust, with increasing density and extinction in the diffuse to dense molecular cloud transition, through mantle formation and grain aggregation, appears to be a likely explanation for the observed C-shine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call