Abstract

The Earthʼs mantle is a huge metamorphic complex which undergoes permanent changes ruled by plate tectonics. It also has enclaves underneath Archean crust which are exempt from the convecting mantle since at least 2.5 Ga. Since then, this mantle may cool slowly as a result of diminishing heat input from the asthenosphere, of declining heat production from radioactive decay and of denudation of the crust. Under such circumstances, two point garnet–clinopyroxene isochrons from mantle xenoliths (here garnet pyroxenites and eclogites) reflect either cooling ages or eruption ages depending on whether the mantle portion under consideration was below or above the closure temperature of a radiogenic system. Available literature data from the Slave and Kaapvaal craton for the Sm–Nd and Lu–Hf isotope systems and our own new data from Bellsbank (Kaapvaal) provide a whole range of two-point isochron ages from younger than the kimberlite eruption age to early Proterozoic. The meaning of ages other than the kimberlite eruption age is unclear. We use here a compilation of Sm–Nd and Lu–Hf two-point isochron age data from this study and the literature, to assess the meaning of such isochrons. This is achieved by plotting the temperature of last equilibration as derived from the Fe–Mg exchange between garnet and clinopyroxene versus the two-point isochron age. There is a low temperature alignment for both systems of increasing age with decreasing temperature and an alignment around the kimberlite eruption ages at high temperatures. We interpret the intersect between the low temperature limb and the kimberlite eruption age as closure temperature which gives about 920 °C for the Lu–Hf system and about 850 °C for the Sm–Nd system.The differences of the cooling ages between the two isotope systems for individual samples combined with the closure temperatures from this study are used to deduce the cooling of the Slave and Kaapvaal subcratonic mantle from the early Proterozoic until today. We deduce that the subcratonic mantle cooled since 2 Ga from a geothermal gradient of 46 mW/m2 to 38 mW/m2 at 120 Ma ago with a rate of around 0.1 °C/Ma. This value is in agreement with previous estimates which were based on various geophysical and geological constraints, heat production by radioactive elements and diffusivity of radiogenic elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.