Abstract

Convective removal of continental lithospheric roots has been postulated to be the primary mechanism of recycling lithospheric mass into the asthenosphere under large plateaux such as the Altiplano-Puna in the central Andes. Convective instabilities are especially likely to develop where there is extensive intermediate arc-like magmatism in the upper plate, as the residual masses complementing these magmatic products are typically denser than the underlying mantle. Mafic volcanic rocks erupted on the central Andean Altiplano-Puna plateau during the past 25 m.y. contain evidence of this process. Here we use equilibration temperatures, age data, and geochemical constraints—primarily based on transition metals—to show that the most important source materials by mass for this mantle-derived magmatism are pyroxenites from the lower parts of the lithosphere, with only minor contributions from mantle peridotite. Pyroxenites are denser than typical upper mantle whether they are garnet bearing or not, and are therefore likely to contribute to destabilizing parts of the continental lithosphere. The pattern of melting is consistent with the process of foundering/dripping of small-scale (

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.