Abstract

China has the largest W reserves in the world, which are mainly concentrated in south China. Although previous studies have been carried out on whether mantle material is incorporated in granites associated with W deposits, the conclusions have been inconsistent. However, rare gas isotopes can be used to study the contribution of mantle-to-W mineralization. In this paper, we investigated the He and Ar isotope compositions of fluid inclusions in pyrite and wolframite from the Xingluokeng ultra-large W-Mo deposit to evaluate the origin of ore-forming fluids and discuss the contribution of the mantle-to-tungsten mineralization. The He-Ar isotopic compositions showed that the 3He/4He ratios of the ore-forming fluid of the Xingluokeng deposit ranged from 0.14 to 1.01 Ra (Ra is the 3He/4He ratio of air, 1 Ra = 1.39 × 10−6), with an average of 0.58 Ra, which is between the 3He/4He ratios of mantle fluids and crustal fluids, suggesting that the mantle-derived He was added to the mineralizing fluid, with a mean of 8.7%. The 40Ar/36Ar ratios of these samples ranged from 361 to 817, with an average of 578, between the atmospheric 40Ar/36Ar and the crustal and/or mantle 40Ar/36Ar. The results of the He-Ar isotopes from Xingluokeng W-Mo deposit showed that the ore-forming fluid of the deposit was not the product of the evolution of pure crustal melt. The upwelling mantle plays an important role in the formation of tungsten deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.