Abstract

Noble gas abundance and isotope data from 12 drilling mud gas samples obtained during IODP Expeditions 338 and 348 provide new insights on fluid origin and fluid migration in the inner accretionary prism below the Kumano forearc basin offshore SE Japan. The samples originate from three adjoining boreholes (C0002F, C0002N and C0002P) spanning depths between 950 and 3050 meters below sea floor (mbsf) and are composed of air and variable contributions of mantle-derived and crustal fluids.Air-corrected 3He/4He ratios of samples from Exp. 338 fall between 0.44 ± 0.24 Ra and 3.26 ± 0.28 Ra. Samples #1400 and #1800 (sample number denotes depth in mbsf) are more influenced by radiogenic helium (1.33 ± 0.34 Ra resp. 0.44 ± 0.24 Ra), whereas the air-free helium isotopic composition of sample #950 is clearly higher (3.26 ± 0.28 Ra). Enhanced radon activity around 950 mbsf, 1100 mbsf, 1400 mbsf, and 1800 mbsf suggests active flow of fluids at these depths.The helium isotopic composition of two other samples (#1700 and #1850) collected during Exp. 338 and of all samples obtained during the 1-year-later Exp. 348 are less variable (1.74–2.46 Ra with a mean 3He/4He ratio of ~ 2.4 Ra) and no radon anomalies were observed during sampling. For these samples, we assume migration by diffusive flow of helium-bearing fluids through sediments of the accretionary prism. In contrast, elevated radon activities and the more variable helium isotopic composition of fluids from 950, 1400, and 1800 mbsf from Exp. 338 are better explained by channelized and active fluid flow through temporarily permeable strata, maybe as a short-term episodic flow event caused by reactivation of buried trust faults. The helium isotopic composition of #950 is in good agreement with estimated helium isotope values of the subducting Philippine Sea Plate (PSP) at present (~ 3.4 Ra), whereas fluids from 1400 and 1800 mbsf demonstrate the input of radiogenic helium from a crustal, probably terrestrial source.

Highlights

  • The Kumano forearc basin is located SE of the Kii Peninsula (Fig. 1) and is one of the most studied forearc basins in the Nankai Trough region and worldwide. It has been explored by several riser and non-riser drilling operations over the course of the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE)

  • For the depth interval 1965.5–2325 mbsf, which was penetrated by both holes, C0002N and C0002P, radon measurements show much higher activity for C0002P, albeit no significant radon peaks between 2050 and 2100 mbsf and below 2210 mbsf, as it was the case for C0002N

  • C0002P displays a general trend of increasing radon activity down to ~ 2500 mbsf with local maxima at ~ 2090 and 2160 mbsf

Read more

Summary

Introduction

The Kumano forearc basin is located SE of the Kii Peninsula (Fig. 1) and is one of the most studied forearc basins in the Nankai Trough region and worldwide. It has been explored by several riser and non-riser drilling operations over the course of the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). Common fluid migration features at convergent margins, in the Kumano forearc basin, are mud volcanoes, through which fluids and gases are expelled to the hydro- and atmosphere. Gas samples taken from mud volcanoes in the Kumano forearc basin showed a clear thermogenic

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call