Abstract
AbstractThe demand for autonomous motion control of unmanned aerial vehicles in air combat is boosted as taking the initiative in combat appears more and more crucial. Unmanned aerial vehicles inability to manoeuvre autonomously during air combat that features highly dynamic and uncertain manoeuvres of the enemy; however, limits their combat capabilities, which proves to be very challenging. To meet the challenge, this article proposes an autonomous manoeuvre decision model using an expert actor‐based soft actor critic algorithm that reconstructs empirical replay buffer with expert experience. Specifically, the algorithm uses a small amount of expert experience to increase the diversity of the samples, which can largely improve the exploration and utilisation efficiency of deep reinforcement learning. And to simulate the complex battlefield environment, a one‐to‐one air combat model is established and the concept of missile's attack region is introduced. The model enables the one‐to‐one air combat to be simulated under different initial battlefield situations. Simulation results show that the expert actor‐based soft actor critic algorithm can find the most favourable policy for unmanned aerial vehicles to defeat the opponent faster, and converge more quickly, compared with the soft actor critic algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.