Abstract

Drug delivery to lungs via pulmonary administration offers potential for the development of new drug delivery systems. Here we fabricated the etofylline (ETO) encapsulated mannose-anchored N,N,N-trimethyl chitosan nanoparticles (Mn-TMC NPs). The prominent characteristics like biocompatibility, controlled release, targeted delivery, high penetrability, enhanced physical stability, and scalability mark Mn-TMC NPs as a viable alternative to various nanoplatform technologies for effective drug delivery. Mannosylation of TMC NPs leads to the evolution of new drug delivery vehicle with gratifying characteristics, and potential benefits in efficient drug therapy. It is widely accepted that following pulmonary administration, the introduction of mannose to the surface of drug nanocarriers provide selective macrophage targeting via receptor-mediated endocytosis. The fabricated Mn-TMC NPs exhibited particle size of 223.3 nm, PDI 0.490, and ζ-potential −19.1 mV, drug-loading capacity 76.26 ± 1.2%, and encapsulation efficiency of 91.75 ± 0.88%. Sustained drug release, biodegradation studies, stability, safety, and aerodynamic behavior revealed the effectiveness of prepared nanoformulation for pulmonary administration. In addition, the in vivo pharmacokinetic studies in Wistar rat model revealed a significant improvement in therapeutic efficacy of ETO, illustrating mannosylation a promising approach for efficient therapy of airway diseases following pulmonary administration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call