Abstract

The migration of macrophages through peripheral tissues is an essential step in the host response to infection, inflammation, and ischemia as well as in tumor progression and tissue repair. The mannose receptor (MR; CD206, previously known as the macrophage MR) is a 175-kDa type I transmembrane glycoprotein and is a member of a family of four recycling endocytic receptors, which share a common extracellular domain structure but distinct ligand-binding properties and cell type expression patterns. MR has been shown to bind and internalize carbohydrate and collagen ligands and more recently, to have a role in myoblast motility and muscle growth. Given that the related Endo180 (CD280) receptor has also been shown to have a promigratory role, we hypothesized that MR may be involved in regulating macrophage migration and/or chemotaxis. Contrary to expectation, bone marrow-derived macrophages (BMM) from MR-deficient mice showed an increase in random cell migration and no impairment in chemotactic response to a gradient of CSF-1. To investigate whether the related promigratory Endo180 receptor might compensate for lack of MR, mice with homozygous deletions in MR and Endo180 were generated. These animals showed no obvious phenotypic abnormality, and their BMM, like those from MR-deficient mice, retained an enhanced migratory behavior. As MR is down-regulated during macrophage activation, these findings have implications for the regulation of macrophage migration during different stages of pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call