Abstract

Macrophages constantly survey and clear tissues by specifically and non-specifically internalizing debris and solutes. However, the molecular mechanisms and modes of regulation of these endocytic and macropinocytic processes are not well understood. Here, CRISPR/Cas9 whole genome screens were used to identify genes regulating uptake of dextran, a sugar polymer that is frequently used as a marker macropinocytosis, and compared with Lucifer yellow, a fluorescent dye with no known receptors. The authors identified the mannose receptor as well as other proteins regulating expression of the mannose receptor as top hits in the screen. Targeted disruption of Mrc1 , the gene that encodes mannose receptor, greatly diminished dextran uptake but had no effect on cellular uptake of Lucifer yellow. Furthermore, exposure to the cytokine IL4 upregulated mannose receptor expression on the cell surface and increased uptake of dextran with little effect on Lucifer yellow uptake. Studies seeking to understand regulation of macropinocytosis in macrophages will be confounded by the use of dextran as a fluid-phase marker. MRC1 is a marker of alternatively activated/anti-inflammatory macrophages and is a potential target for delivery of therapeutics to macrophages. This work provides the basis for mechanistic underpinning of how MRC1 contributes to the receptor-mediated uptake of carbohydrates and glycoproteins from the tissue milieu and distinguishes genes regulating receptor-mediated endocytosis from those regulating the bona fide fluid-phase uptake of fluids and solutes by macropinocytosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.