Abstract

Biofilms are one of the most challenging obstacles in bacterial infections. By providing protection against immune responses and antibiotic therapies, biofilms enable chronic colonization and the development of antibiotic resistance. As previous clinical observations and studies have shown, traditional antibiotic therapy alone cannot effectively treat and eliminate biofilm forming infections due to the protection conferred by the biofilm. A new strategy specifically targeting biofilms must be developed. Here, we specifically target and bind to the PAO1 biofilm and elucidate the molecular mechanism behind the interaction between a glycan targeted polymer and biofilm using a continuous flow biofilm model. The incubation of biofilms with fluorescent glycan targeted polymers demonstrated strong and persistent interactions with the mannose-containing polymer even after 24 h of continuous flow. To evaluate the role of major biofilm proteins LecB and CdrA, loss of function experiments with knockout variants established the dual involvement of both proteins in mannose targeted polymer retention. These results identify a persistent and specific targeting strategy to the biofilm, emphasizing its potential value as a delivery strategy and encouraging further exploration of biofilm targeted delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.