Abstract

Mannose-binding lectin (MBL) is an important component of innate immune defense. MBL undergoes oligomerization to generate high mol weight (HMW) forms which act as pattern recognition molecules to detect and opsonize various microorganisms. Several post-translational modifications including prolyl hydroxylation are known to affect the oligomerization of MBL. Yet, the enzyme(s) which hydroxylate proline in the collagen-like domain residues have not been identified and the significance of prolyl hydroxylation is incompletely understood. To investigate post-translational modifications of MBL, we stably expressed Myc-DDK tagged MBL in HEK293S cells. We used pharmacologic and genetic inhibition of 2-oxoglutarate-dependent dioxygenases (2OGDD) to identify the enzyme required for prolyl hydroxylation of MBL. We performed mass spectrometry to determine the effects of various inhibitors on MBL modifications. Secretion of HMW MBL was impaired by inhibitors of the superfamily of 2OGDD, and was dependent on prolyl-4-hydroxylase subunit α1. Roxadustat and vadadustat, but not molidustat, led to significant suppression of hydroxylation and secretion of HMW forms of MBL. These data suggest that prolyl hydroxylation in the collagen-like domain of MBL is mediated by collagen prolyl-4-hydroxylase. Reduced MBL activity is likely to be an off-target effect of some, but not all, prolyl hydroxylase domain (PHD) inhibitors. There may be advantages in selective PHD inhibitors that would not interfere with MBL production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call