Abstract
The mannose-binding activity of several isolates of Escherichia coli was monitored by aggregometry with mannan-containing yeast cells. The velocity of yeast cell aggregation was found to correlate with the ability of the organisms to adhere to human epithelial cells. Mannose or its derivatives specifically inhibited or reversed epithelial cell adherence and yeast cell aggregation. Most of the adherent bacteria could be displaced within 30 min from the epithelial cells with methyl alpha-d-mannopyranoside, but not with other sugars tested. Cultures of E. coli were fractionated into nonadherent and adherent populations by adsorption with epithelial cells followed by elution of the adherent bacteria with methyl alpha-d-mannopyranoside. When the methyl alpha-d-mannopyranoside-displaced organisms were washed free of the sugar, they exhibited a high degree of mannose-binding activity and were heavily piliated. In contrast, the nonadherent fraction of organisms lacked detectable mannose-binding activity and were devoid of pili. Our results suggest that the binding activity of a mannose-specific lectin on the surface of E. coli can be quantitated directly on intact organisms, and the observed variations in the amount of mannose-binding activity among human isolates accounts for the variation in adherence of the organisms to mannose residues on epithelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.