Abstract

Fungi use mannitol to store carbon, balance redox, and mannitol serves as an antioxidant. Several fungi also increase stress tolerance by accumulating mannitol. The results of this study showed that conidia of the cereal head blight fungus Gibberella zeae were readily changed to chlamydospore-like structures (CLS) in cultures supplemented with high amounts of mannitol. CLS cellular features were atypical of chlamydospores, but accumulated high levels of glycogen, lipids, and chitin in the cytoplasm. In addition, CLS exhibited increased tolerance to environmental stresses, including UV, heat, and drought compared to normal conidia. Molecular approaches revealed that several genes associated with lipid metabolism, signal transduction, acetyl-CoA production, and chitin synthesis were involved in CLS formation. This is the first report to characterize conidia modifications similar to chlamydospores in G. zeae applying histological and molecular approaches. The results suggest CLS serve a role in G. zeae survival strategies under hot and dry field conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.