Abstract

BackgroundComplement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease. This work defines the contributions of each of the three LP-associated enzymes—mannan-binding lectin-associated serine protease (MASP)-1, MASP-2, and MASP-3—to ischemic brain injury in experimental mouse models of stroke.MethodsFocal cerebral ischemia was induced in wild-type (WT) mice or mice deficient for defined complement components by transient middle cerebral artery occlusion (tMCAO) or three-vessel occlusion (3VO). The inhibitory MASP-2 antibody was administered systemically 7 and 3.5 days before and at reperfusion in WT mice in order to assure an effective MASP-2 inhibition throughout the study. Forty-eight hours after ischemia, neurological deficits and infarct volumes were assessed. C3 deposition and microglia/macrophage morphology were detected by immunohistochemical, immunofluorescence, and confocal analyses.ResultsMASP-2-deficient mice (MASP-2−/−) and WT mice treated with an antibody that blocks MASP-2 activity had significantly reduced neurological deficits and histopathological damage after transient ischemia and reperfusion compared to WT or control-treated mice. Surprisingly, MASP-1/3−/− mice were not protected, while mice deficient in factor B (fB−/−) showed reduced neurological deficits compared to WT mice. Consistent with behavioral and histological data, MASP-2−/− had attenuated C3 deposition and presented with a significantly higher proportion of ramified, surveying microglia in contrast to the hypertrophic pro-inflammatory microglia/macrophage phenotype seen in the ischemic brain tissue of WT mice.ConclusionsThis work demonstrates the essential role of the low-abundant MASP-2 in the mediation of cerebral ischemia-reperfusion injury and demonstrates that targeting MASP-2 by an inhibitory therapeutic antibody markedly improved the neurological and histopathological outcome after focal cerebral ischemia. These results contribute to identifying the key lectin pathway component driving brain tissue injury following cerebral ischemia and call for a revision of the presently widely accepted view that MASP-1 is an essential activator of the lectin pathway effector component MASP-2.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0684-6) contains supplementary material, which is available to authorized users.

Highlights

  • Complement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease

  • This work demonstrates the essential role of the low-abundant mannan-binding lectin-associated serine proteases (MASPs)-2 in the mediation of cerebral ischemia-reperfusion injury and demonstrates that targeting MASP-2 by an inhibitory therapeutic antibody markedly improved the neurological and histopathological outcome after focal cerebral ischemia. These results contribute to identifying the key lectin pathway component driving brain tissue injury following cerebral ischemia and call for a revision of the presently widely accepted view that MASP-1 is an essential activator of the lectin pathway effector component MASP-2

  • MASP-2 significantly contributes to brain damage following cerebral IRI First, we focused on MASP-2, the effector enzyme required for LP functional activity

Read more

Summary

Introduction

Complement activation via the lectin activation pathway (LP) has been identified as the key mechanism behind post-ischemic tissue inflammation causing ischemia-reperfusion injury (IRI) which can significantly impact the clinical outcome of ischemic disease. The complement system represents a powerful contributor to ischemic brain injury by several possible mechanisms including anaphylatoxin release, endothelial activation aiding leukocyte adhesion and recruitment, over-activation of the phagocytic system, and direct cellular lysis [1]. C5 cleavage releases the potent complement anaphylatoxin C5a and the larger fragment C5b that initiates the formation of the membrane attack complex (MAC) by subsequent recruitment of the terminal cascade components C6-C9. This MAC inserts into cell membranes to form a pore that results in ion flux, causing cell lysis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.