Abstract
Background & AimsLiver fibrosis represents a hallmark of most chronic liver diseases (CLD) triggered by recurrent liver injury and subsequent myofibroblast transdifferentiations of resident hepatic stellate cells (HSCs). Mannan-binding lectin (MBL) is potentially involved in hepatic fibrosis in CLD through unclear mechanisms. Therefore, we investigated the crosstalk between MBL and HSCs, and the consequent effects on fibrosis progression.MethodsSamples from patients with liver cirrhosis were collected. MBL deficiency (MBL-/-) and wild-type (WT) C57BL/6J mice were used to construct a CCl4-induced liver fibrosis model. Administration of MBL-expressing, liver-specific, adeno-associated virus was performed to restore hepatic MBL expression in MBL-/- mice. The human HSC line LX-2 was used for in vitro experiments.ResultsMBL levels in patients with liver cirrhosis were correlated with disease severity. In the CCl4-induced liver fibrosis model, MBL-/- mice showed severer liver fibrosis accompanied by reduced senescent activated HSCs in liver tissue compared with WT mice, which could be inhibited by administering MBL-expressing, liver-specific, adeno-associated virus. Moreover, depleting senescent cells with senolytic treatment could abrogate these differences owing to MBL absence. Furthermore, MBL could interact directly with calreticulin associated with low-density lipoprotein receptor-related protein 1 on the cell surface of HSCs, which further promotes senescence in HSCs by up-regulating the mammalian target of rapamycin/p53/p21 signaling pathway.ConclusionsMBL as a newfound senescence-promoting modulator and its crosstalk with HSCs in the liver microenvironment is essential for the control of hepatic fibrosis progression, suggesting its potential therapeutic use in treating CLD associated with liver fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Cellular and Molecular Gastroenterology and Hepatology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.