Abstract

Inverse kinematic solutions are used in manipulator controllers to determine corrective joint motions for errors in end-effector position and orientation. Previous formulations of these solutions, based on the Jacobian matrix, are inefficient and fail near kinematic singularities. Vector formulations of inverse kinematic problems are developed that lead to efficient computer algorithms. To overcome the difficulties encountered near kinematic singularities, the exact inverse problem is reformulated as a damped least-squares problem, which balances the error in the solution against the size of the solution. This yields useful results for all manipulator configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.