Abstract

A desymmetrization strategy has been devised in the design of molecular cylinders to maximize the dissymmetry factor relevant to circularly polarized light. Although the highest dissymmetry factor of organic molecules was previously achieved with a chiral belt-persistent cycloarylene having magnetic and electric transition dipole moments in parallel, we noticed that an unbalanced magnitude of two moments was detrimental for higher dissymmetry factors. In this study, a molecular cylinder was desymmetrized by arraying doped and undoped panels via stereoselective cross-coupling macrocyclization. The desymmetrization succeeded in balancing two moments by reducing the electric transition moment at the global minimum but failed to maximize the dissymmetry factor. Structural studies revealed that the dissymmetry factor is sensitive to subtle structural fluctuations, while the rotatory strength is not affected. This study is important for the development of chiroptical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.