Abstract
Manipulation structure of graphitic carbon nitride (GCN) to tune its photophysical and interfacial redox activity is one of fundamental issues for understanding and improving its photocatalytic hydrogen evolution (PHE) activity. In this work, we report our recent progress on manipulating structure of GCN via an easy and effective approach. Trace level iron is found to have increased atomic concentration and tuned bond state of carbon in structure manipulated GCN (M-GCN) along with porosity of it, which exhibits higher interfacial redox and photophysical activity than GCN. The improved interfacial redox and photophysical activities of M-GCN are found to have synthetic enhanced consumption of photo-generated electrons and holes during photocatalysis process and reduction of their recombination, which results in promotion of its PHE activity. PHE rate for M-GCN is found to be 2286 μmol−1 g−1 h−1, which is 2.82 time of GCN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.