Abstract
The manipulation of the orbital angular momentum (OAM) contributes to understand the OAM multiplexing, is significant in free-space optical communication and information processing. We theoretically simulate and experimentally demonstrate the regularity of the OAM transfer, including the angular and radial modes, of Laguerre–Gaussian beam via four-wave mixing process in 85Rb vapor. The 420 nm coherent blue light output field inherits the phase characteristic of 780 nm and 776 nm beams with different OAM modes. The output field OAM modes show the transfer as a typical arithmetic operation of the input field OAM modes with equal-handed angular indice l, while, the conversion between angular and radial modes occurs with the opposite angular indice l. Such rules of the OAM transfer and manipulation have implications on the research of high-capacity information transfer and quantum communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.