Abstract

The determination of glucose in microfluidic chips made of glass or PMMA was used as a model for the combination of an enzymatic reaction with the separation of compounds. It was based on the enzymatic oxidation of glucose and the amperometric detection of hydrogen peroxide. Real samples frequently contain compounds, such as ascorbic acid, which may interfere with quantitative glucose determinations. Thus, electrophoretic separation of specific from unspecific signals was envisaged by applying electric fields which are also used to control the flow of liquid via electroosmotic effects. Surface charge densities of the capillaries influence the electroosmotic flow (EOF). They are dependent on the chip material and on the adsorption of components from the background electrolyte. Reversal of the EOF after addition of cetyltrimethylammonium bromide (CTAB) and an increase in EOF after addition of sodium dodecylsulfate (SDS) were observed at lower surfactant concentrations with the PMMA chips rather than with the glass chips. For both chip materials these concentrations were below the critical micelle concentration. Effective separation of H2O2 and ascorbic acid was achieved with low CTAB concentrations, which lead to a reduction, but not to a reversal of the EOF. Reversal of the EOF by higher CTAB concentrations or the increase in cathodic EOF by SDS accelerated ascorbic acid transportation and reduced the differences in migration times. Thus, for the specific determination of glucose, glucose oxidase was added together with low CTAB concentrations to the background electrolyte. This avoided interference from ascorbic acid, and data obtained from the analysis of fruit juices showed a good correlation to data obtained from a reference method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.