Abstract
Electronic synapses with both long-term and short-term plasticity are considered as significant components for constructing brain-inspired computing systems. Research progress on electrical synapses have proved that memristors possess huge similarities with biological synapses. Nevertheless, an effective mean of manipulating the biological properties of memristors is still unclear. In this letter, we propose a memristor and reveal that the compliance current of electroforming plays an active role in tuning short-term and long-term plasticity of the memristors. The results may provide a useful guideline for manipulating memristor as electronic synapses in the hardware implementation of artificial neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.