Abstract
We calculate the delay time and noise spectrum of a squeezed state throughout an electromagnetically induced transparency medium with dynamic Stark splitting. It is shown that the noise spectrum splits into two parts with the same delay time, so that the delayed squeezing can survive well in two channels. Furthermore, we show that the two squeezing channels as well as the delay time can be manipulated via one-photon detuning and detection frequency such that the quantum state with high delay time and squeezing can be well preserved. This avoids the influence of large noise from laser near zero detection frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.