Abstract

We theoretically investigate the phenomena of slow and superluminal light based on a doubly clamped Z-shaped graphene nanoribbon (GNR) nanomechanical resonator driven by two-tone fields. Superluminal and ultraslow probe light without absorption can be obtained via manipulating the pump laser on- and off-resonant with the exciton frequency, respectively. The results indicate that the above phenomena cannot occur without the coupling between graphene resonator and excition in the system. Further, the all-optical schemes for determining the graphene resonator frequency and the coupling strength of excition-resonator in the Z-shaped GNR system are also proposed. The all-optical device based on graphene resonator may have potential application in optical networks and engineering in nanoscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call