Abstract

Storage phosphors displaying defect emissions are indispensable in technologically advanced radiation dosimeters. The current dosimeter is limited to the passive detection mode, where ionizing radiation-induced deep-trap defects must be activated by external stimulation such as light or heat. Herein, we designed a new type of shallow-trap storage phosphor by controlling the dopant amounts of Ag+ and Bi3+ in the host lattice of Cs2NaInCl6. A distinct phenomenon of X-ray-induced emission (XIE) is observed for the first time in an intrinsically nonemissive perovskite. The intensity of XIE exhibits a quantitative relationship with the accumulated dose, enabling a real-time radiation dosimeter. Thermoluminescence and in situ X-ray photoelectron spectroscopy verify that the emission originates from the radiative recombination of electrons and holes associated with X-ray-induced traps. Theoretical calculations reveal the evolution process of Cl-Cl dimers serving as hole trap states. Analysis of temperature-dependent radioluminescence spectra provides evidence that the intrinsic electron-phonon interaction in 0.005 Ag+@ Cs2NaInCl6 is significantly reduced under X-ray irradiation. Moreover, 0.025 Bi3+@ Cs2NaInCl6 shows an elevated sensitivity to the accumulated dose with a broad response range from 0.08 to 45.05 Gy. This work discloses defect manipulation in halide double perovskites, giving rise to distinct shallow-trap storage phosphors that bridge traditional deep-trap storage phosphors and scintillators and enabling a brand-new type of material for real-time radiation dosimetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call