Abstract

Reactive oxygen species (ROS) comprise a group of noxious byproducts of oxidative processes which participate in the induction of many common diseases. However, understanding their role in the regulation of normal physiological redox signaling is currently evolving. Detailed study of the dynamic functions of ROS within the biological milieu is difficult because of their high chemical reactivity, short lifetime, minute concentrations and cytotoxicity at high concentrations. In this study, we show that increasing intracellular ROS levels, set off by controlled in situ photogeneration of a nontoxic bacteriochlorophyll-based sensitizer initiate responses in cultured melanoma cells. Using hydroethidine as detector, we determined light-dependent generation of superoxide and hydroxyl radicals in cell-free and cell culture models. Monitoring the ROS-induced responses revealed individual and differential behavior of protein kinases [p38, mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and Akt] as well as effects on the subcellular distribution of phosphorylated p38. Furthermore, alterations in morphology and motility and effects on cell viability as a function of time and photosensitizer doses were observed. Following mild ROS challenge, enzymatic and cellular changes were observed in the majority of the cells, without inducing extensive cell death. However, upon vigorous ROS challenge, a similar profile of the overall responses was observed, terminating in cell death. This study shows that precisely controlled photogeneration of ROS can provide simple, fine-tuned, noninvasive manipulation of ROS-sensitive cellular responses ranging from individual enzymes to gross behavior of target cells. The observations made with this tool enable a dynamic and causal correlation, presenting a new alternative for studying the role of ROS in cellular redox signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.