Abstract

Orbit-induced localized spin angular momentum (OILS) has recently garnered significant attention. This paper introduces periodic edge dislocation (PED) into the tight focusing system. The study delves into the tight focusing characteristics of the radially polarized vortex plane beam with PED, demonstrating that PED serves as a straightforward and effective means of manipulating OILS, especially when both the orbital angular momentum and the polarization of the incident beam are fixed. Our findings indicate that the longitudinal OILS reaches its maximum when the difference between the period of PED and the vortex topological charge is equal to 1. Conversely, when the difference is 0, the transverse OILS reaches its maximum, while the longitudinal OILS reaches its minimum. Similar patterns are also observed in linearly polarized vortex beams. This research proposes a simple and practical way to control OILS, contributing to our understanding of optical orbit-spin coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call