Abstract

AbstractManipulation of cell–cell interactions via cell surface engineering has potential biomedical applications in tissue engineering and cell therapy. However, manipulation of the comprehensive and multiple intercellular interactions remains a challenge and missing elements. Herein, utilizing a DNA triangular prism (TP) and a branched polymer (BP) as functional modules, we fabricate tunable DNA scaffold networks on the cell surface. The responsiveness of cell–cell recognition, aggregation and dissociation could be modulated by aptamer‐functionalized DNA scaffold networks with high accuracy and specificity. By regulating the DNA scaffold networks coated on the cell surface, controlled intercellular molecular transportation is achieved. Our tunable network provides a simple and extendible strategy which addresses a current need in cell surface engineering to precisely manipulate cell–cell interactions and shows promise as a general tool for controllable cell behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call