Abstract

Nanostructures of drug carriers play a crucial role in nanomedicine due to their ability to influence drug delivery. There is yet no clear consensus regarding the optimal size and shape (e.g., aspect ratio) of nanoparticles for minimizing macrophage uptake, given the difficulties in controlling the shape and size of nanoparticles while maintaining identical surface properties. Here, we employed graft copolymer self-assembly to prepare polymer micelles with aspect ratios ranging from 1.0 (spherical) to 10.8 (cylindrical) and closely matched interfacial properties. Notably, our findings emphasize that cylindrical micelles with an aspect ratio of 2.4 are the least susceptible to macrophage uptake compared with both their longer counterparts and spherical micelles. This reduced uptake of the short cylindrical micelles results in a 3.3-fold increase in blood circulation time compared with their spherical counterparts. Controlling the aspect ratio of nanoparticles is crucial for improving drug delivery efficacy through better nanoparticle design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call